Cnc machining parts manufacturer by Dongguan Fortuna: Dongguan Fortuna was established in 2003. It has a factory area of 16,000 square meters and 260 employees. It is a production enterprise specializing in precision metal stamping parts, precision CNC processing, injection molding and product assembly. In 2022,Our company has established a Japanese Office. Company has obtained IATF16949:2016, ISO14001:2015 and ISO 9001:2015 quality system certificate. Products are widely used in home appliance, communication equipment, auto parts, new energy vehicles and aviation filed. Product quality and affordable price won the praise of customers. Products are exported to Japan, USA, Germany, the Czech Republic, Hungary, Norway and other countries. We adhere to the business philosophy of “stability, integrity, innovation” and look forward to working closely with all trading partners to make progress together. Read additional info at cnc machining part.
Wall Thickness and Fillets – Wall thickness is critical for both strength and machinability. Thin walls can lead to part deformation, while overly thick walls might be unnecessary and increase material costs. Aim for a balanced wall thickness that maintains strength without compromising machinability. Fillets, or rounded internal corners, are also vital. They reduce stress concentrations and enhance the lifespan of cutting tools. Incorporating fillets into your design can lead to more durable parts and smoother machining processes. Threaded Features – Threads are essential for assembly in many CNC machined parts. Designing internal and external threads requires attention to detail to ensure compatibility and durability. Standard thread sizes and pitches can simplify machining and reduce costs.
The main frame of the high-rigidity machine tool is equipped with a slider balance device, a machine foot shock absorber and an emergency braking device, which not only ensures the safety of stamping technicians, but also ensures the accuracy of machine production and protects the service life of the punch and mold; it also It is equipped with a full set of auxiliary supporting devices, such as commonly used high-precision gap feeding devices, balancing devices, vibration reduction and noise reduction devices, to ensure its stamping performance. It has extremely high stamping accuracy and feeding accuracy. The stamping accuracy of each high-speed punch press can reach the accuracy standard, and the feeding accuracy can reach ±0.01~0.03mm, which is beneficial to improving the positioning accuracy of the work steps and reducing damage to equipment or molds caused by inaccurate feeding.
We have 45 professional mold technicians and 5 mold design engineers.The company’s minimum punching distance is 0.2MM.the mold parts processing accuracy to 0.005MM, and the overall assembly accuracy to 0.01MM.Our R&D team has more than 10 years of experience in the precision stamping parts industry and can provide one-stop services from product evaluation to mold design, manufacturing, assembly, mold trial, and production. After the mold assembly is completed, professional mold technicians will be arranged to conduct mold trials. Advanced quality testing equipment will be used to test the dimensional accuracy, surface quality, internal structure of the first product, and may also conduct mechanical properties, functional testing, salt testing. Advanced Equipment – DOBBY NXT stamping equipment mainly adopts a toggle design, which can automatically adjust the equipment parameters to meet different stamping needs. This equipment is mainly used to manufacture precision hardware, electronic components, auto parts and other products that require high-precision processing. 40T-60T punching machines are mainly used in the metal stamping forming process and can meet the needs of various industries for high-precision and high-efficiency metal stamping parts. Its equipment, especially the SDS series servo punch machines, combines traditional mechanical punch machines with digital servo control systems, which can handle various stamping processes in an intelligent, composite, and green way to meet the needs of difficult-to-process forming materials.
Choose Appropriate Tolerances: While tight tolerances may be necessary for certain features, applying them universally can increase costs. Apply tighter tolerances only where they are crucial to the part’s function. For non-critical areas, looser tolerances can suffice. Reducing Waste and Improving Efficiency – Minimizing material waste and optimizing machining efficiency are key to cost-effective CNC machining. Nesting and Optimal Stock Sizes: Efficiently nesting parts on the raw material can reduce waste. By strategically arranging parts on the material sheet or bar, you can maximize the use of the material and reduce scrap. Additionally, selecting stock sizes that closely match the final dimensions of your part can minimize excess material removal. Read extra info on https://www.dgmetalstamping.com/.
Fortuna can achieve riveting operations inside the mold. In-mold riveting refers to the rapid and accurate riveting operation of two or more stamping products inside the mold, which can reduce the product assembly process and achieve rapid product delivery. Features : High degree of automation: In-mold riveting technology adopts an automated control system, which can accurately control operations and ensure riveting quality to the greatest extent. This technology combines multiple stages of the manufacturing process into one, which not only maintains high-quality riveting effects, but also effectively reduces production costs and cycles, and improves productivity.
Material Selection – Selecting the right material is crucial for CNC machining. Metals like aluminum, steel, and titanium are popular due to their strength and machinability. Plastics such as ABS and polycarbonate are also commonly used for their ease of machining and lightweight properties. Composites can offer unique advantages but might require special considerations due to their structure. Material properties like hardness, tensile strength, and thermal stability affect how they can be machined. For instance, harder materials may require slower machining speeds and more robust tooling, while softer materials can be machined more quickly but might necessitate careful handling to avoid deformation.